

Chapters

Chapter One : Introduction

Chapter Two : Preliminary Design

Chapter Three : 3 Dimensional Structural Analysis and Design

CHAPTER ONE :INTRODUCTION

Project title : Hirbawi Center

A building lies in the east side of Tulkarm, this building consists of five stories of (5372 m²)

Under ground floor consists of Car Parking & water tank and it's height 3.8 m

Ground Floor (Entrance Level) : Retail – Commercial and Small Offices it's height 4.9 m

1st floor consists of commercial and Small Offices it's height 4.3 m

2nd & 3rd floor consists of apartments, Offices and Maintenance area for elevators, solar panels for water heating, it's height 3.6 m

Design Data

Yielding strength of steel, $fy = 4200 \text{ kg/cm}^2$.

 $B300 \rightarrow fc = 240 \text{ kg} / cm^2 \rightarrow Ec =$

 $2.34 \times 10^{5} \text{ Kg} / \text{cm}^{2}$

Unit weights of materials:

Reinforced concrete = 2.5 ton/m^3 . Blocks = 1.2 ton/m^3 . Stone = 2.6 ton/m^3 . Sand = 2 ton/m^3 .

soil bearing capacity = 4 kg/cm^2 .

Design Data

code used in the design is ACI 2008 (American Concrete Institute .

Program used SAP 2000 V14 (structural analysis program).

Methods: Ultimate design method

Loads & Load combinations :

Load combinations 1.4D 1.2 D + 1.6 L + 0.5 S. 1.2 D + 1.6 S + 0.5 L 1.2 D + 1.6 W + 0.5 L + 0.5 S 1.2 D + 1.0 E + 0.5 L + 0.2 S 0.9 D \pm (1.6 W or 1.0 E) Where :

- D: Dead Load
- L : Live Load
- W: wind Load
- S : snow load
- E: Earthquake load

Design loads:

live load is 500 kg/m². Super imposed dead load is 400 kg/m².

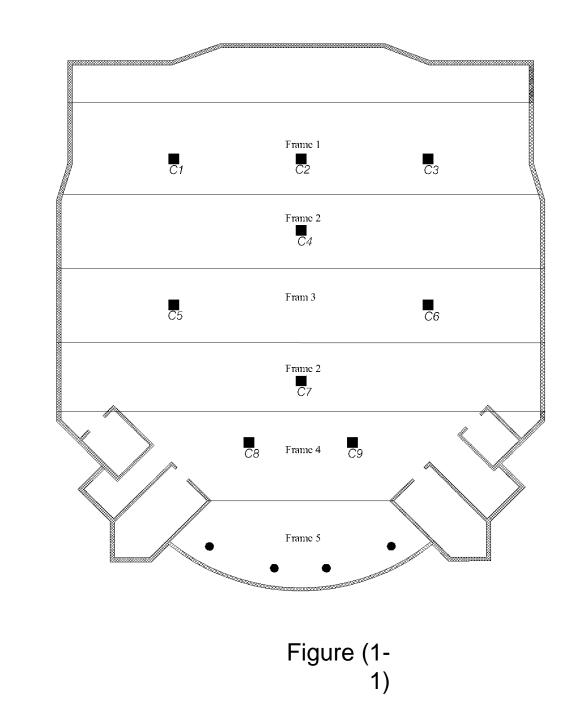
The earthquake load is response spectrum in x and y directions, Ca = 0.18, Cv = 0.25

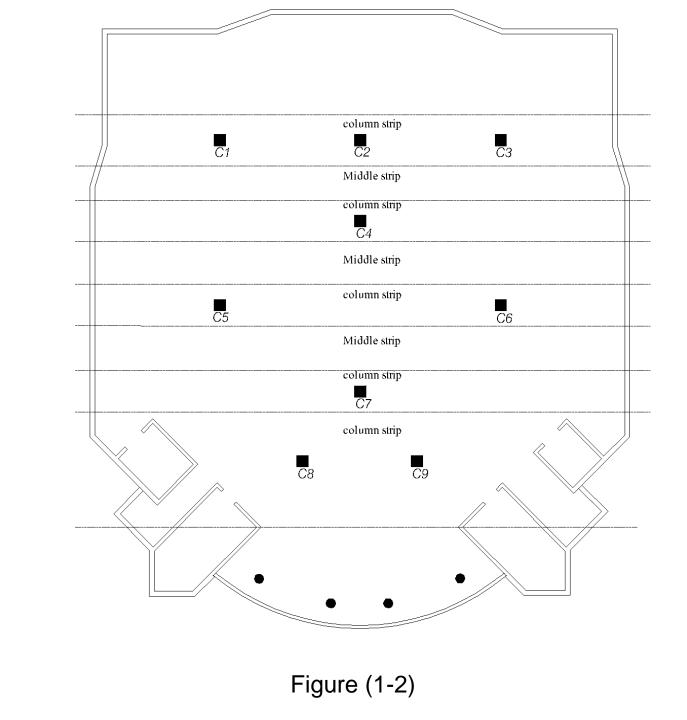
Chapter Two: Preliminary Design Slab section:

For flat plate slab

 $Min t = L_n/33$

t slab =28.2 cmuse t= 30 cm.


Analysis and design frame using Sap


The flat plate can be divided to frames in each direction . Here , calculations are made for

frame 1 shown in figure (1-1)

Results from sap :

Frame bending moment as shown in figure (1-2)

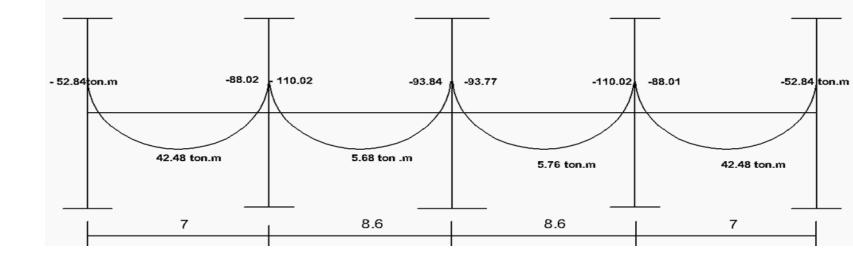


Figure (1-3) Frame bending moment

Negative moment at exterior support=0.75Mo

Positive moment =0.6Mo

Figure (1-5) column strip steel reinforcement

For middle

Negative moment at exterior support = 0.25 Mo Positive moment = 0.4 Mo

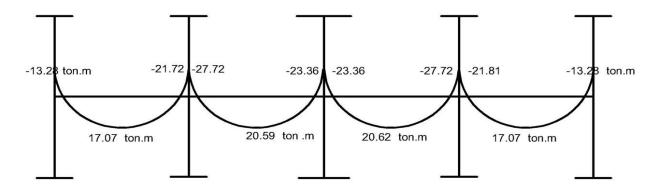


Figure (1-6) middle strip moment

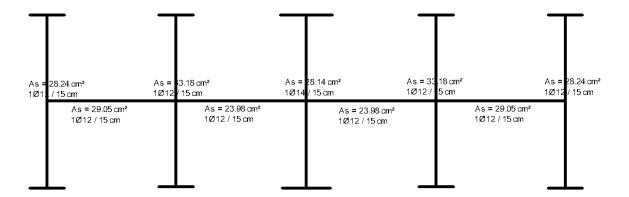


Figure (1-7) middle strip steel reinforcement

Chapter Three: Three Dimensional Structural Analysis and Design

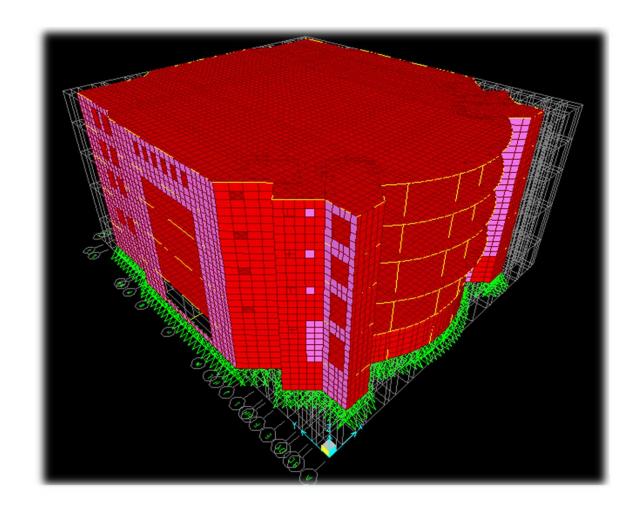
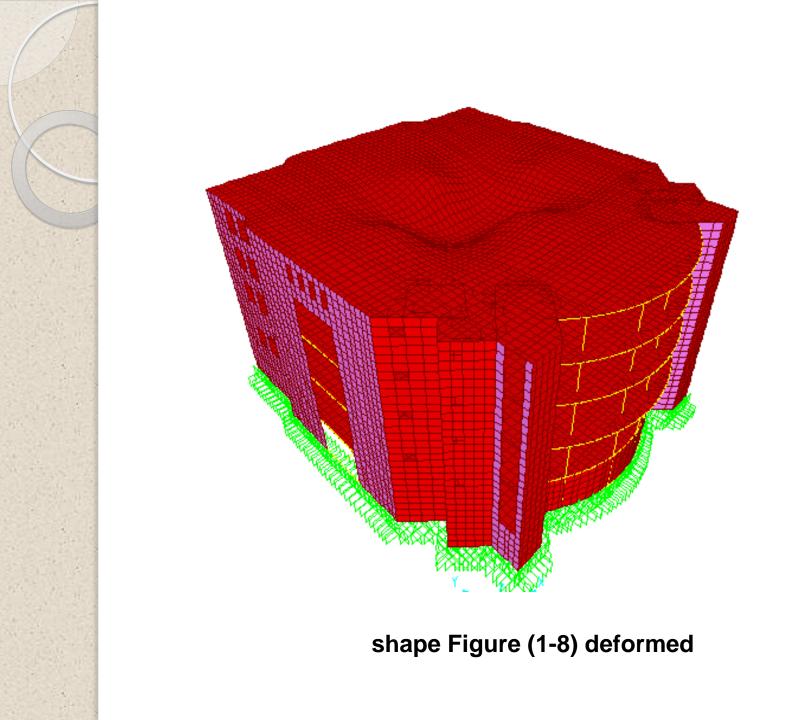



Figure (1-8) 3-D model

Structural modal verification

Check of compatibility •

Compatibility is achieved as the structure • behaves as a one unit as in reality through the meshing of all areas and dividing of all frames such as beams and columns in a way that the point of divisions meet. achieved as shown on Compatibility was figure (1-9)

Check of equilibrium Live load manually= 2685.69 ton Total dead load manually= 9100.39 ton Results of live and dead loads from SAP

Ba	Base Reactions											
	File View Format-Filter-Sort Select Options											
	Units: /	its: As Noted Base Reactions										
		OutputCase	CaseType	GlobalFX			GlobalMX	GlobalMY		GlobalX		
		Text	Text	Tonf	Tonf	Toni	Tonf-m	Tonf-m	Tonf-m	m		
	•	DEAD	LinStatic	000000001002	00000001697	9055.9306	173176.87	-149592.332	00000008838	0		
		live	LinStatic	6.983E-13	000000001641	2701.4172	52561.59259	-44613.483	00000005025	0		

- % of error for dead load = 0.49 % < 5 %
- % of error for live load= 0.58 % < 5 %

Stress strain relationships:

verify the magnitude of moment which extracted from

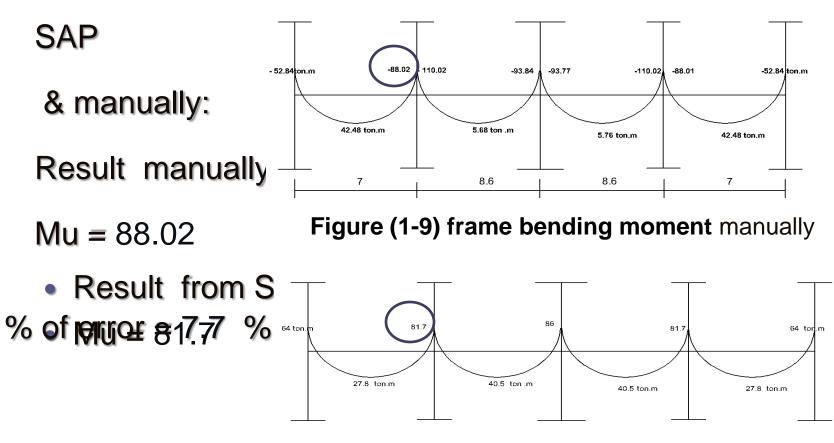


Figure (1-10) frame bending moment from sap

Check Building Natural Period

From sap analysis result (0.4707)

Ta = **0.1** * **N**

= 0.1 * 5 = 0.5 so (0.4707) from sap analysis result Ok (approximate compassion

Column design

Columns classification:

Short columns Long columns

If it is short if the following achieved:

For braced columns : KL/r≤ 34-12(M_{1b}/M_{2b}). For unbraced columns : KL/r≤ 12

Column design

The design load can be calculated using the following equation:

 $Pd=\phi Pn=\phi^*\lambda \{0.85^* f'c(Ag-As) + As^*fy\}$

 ϕ = 0.65 for tied columns ϕ = 0.75 for spiral columns λ = 0.8 for tied columns λ = 0.85 for spiral columns

column	# of bars from sap			
C1,C2,C3,C4,C7,C8,C9	24Ф20			
C4, C5	24Ф25			

Slab design

Design requirements:

Bending moment resistance:

$$\rho = \frac{0.85 \, fc}{fy} \left[1 - \sqrt{1 - \frac{2.61 * \, 10^6 \, Mu}{fc \, b \, d^2}} \right]$$

Asmin =p shrinkage*b*d

Slab design

For frame 1 refer to figure (1-1).

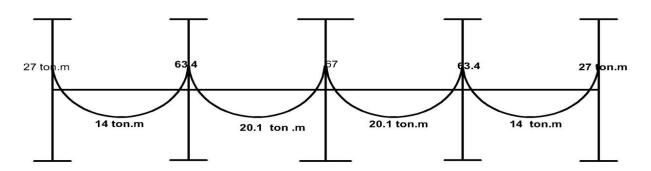


Figure (1-11) Bending moment for column strip for frame 1 in slab1 X-dir

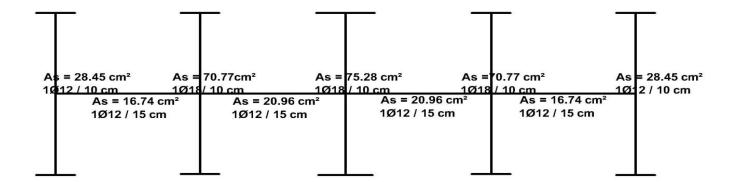


Figure (1-12) column strip reinforcement for frame 1 in slab1 X-dir

For middle strip :

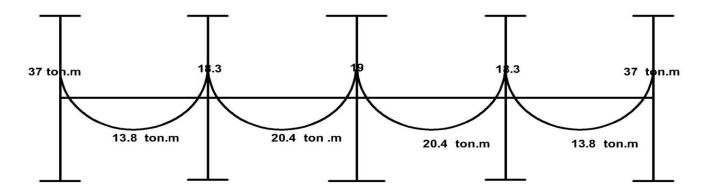


Figure (1-13) Bending moment for middle strip for frame 1 in slab1 X-dir

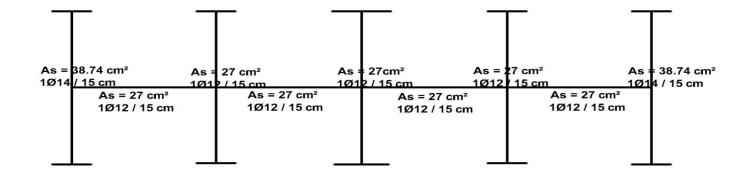
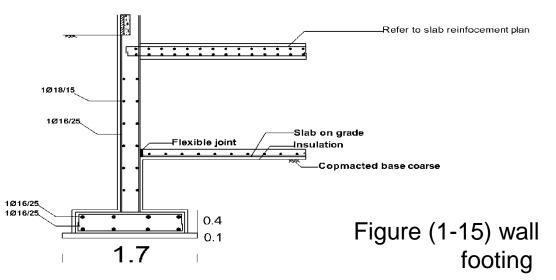


Figure (1-14) Middle strip reinforcement for frame 1 in slab1 X-dir

Footing Design

The function of foundation is transmitting load of structure to soil layers.

The soil in this project is rock .


The ultimate bearing capacity of a soil supporting the footing is 4 kg/cm^2 .

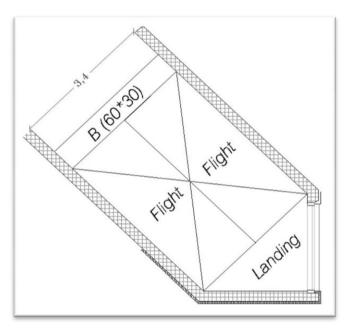
Types of footing in this project Wall footing: to support bearing wall

Single footing (continues): to support columns

Wall footing design

- After calculations :
- width of wall = 1.7 m
- Depth = 0.4 m

Maximum area of steel from sap (footing) = 11.33 cm²


Use 1 Ø 16 / 15 cm .

Maximum area of steel from sap (Wall) = $7.86 \cdot cm^2$

Use 1 Ø 16 / 25 cm •

Design of stairs :

Concrete compressive strength, f'c= 240kg/cm². Yield Strength of steel, fy=4200kg/cm². The thickness of stairs slab is = 0.15m Loads For landing part, S.I.D=0.3 ton/m² For flight part, S.I.D = 0.3 ton/m² Live load=0.5 ton/m²,

Steel of beamFigure (1-16)stairs
planuse 5 ϕ 16 bottom bars and 5 ϕ 12 top bars

Steel of the flight use (1 ϕ 14 / 15cm) main steel

Use $(1 \phi 12 / 30 \text{ cm})$ secondary steel **Steel for landing :** Use $(1 \phi 18 / 10 \text{ cm})$ main steel

Design of water tank Steel for Base of tank Use (1¢20/25 cm) as bottom steel. Use (1¢20/10 cm) as top steel. Steel for (curve) Use (1¢14/20 cm) as bottom steel. Use(1¢14/20 cm) as top steel.